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By W. Perl

SUMMARY

A simple approximate method is given for the calculation of
igentropic irrotational flows past symwetrical sirfoils, including
nmixed subsonic-supersonic flows. The method is based on the choilce
of sultable values for the streamline curvature in the flow field
and subsequent integration of the equabions of motlion. The method
yields limiting solutions for potential flow. The effect of clrou-
latlion is considered.

A comparison of derived velocity dilstributions with existing
resulte that are basged on calculation to the third order in the
thickness ratio indicates satisfactory agreement. The resulis are
also presented in the form of a set of compressibility correction
rules that lie between the Prandtl-Gleuert rule and the von Kfrmdn-
Teien rule (approximately). The different rules correspond to

different values of & local shape parameter aJYCa, in which Y is

the ordinate and Cg 1s the curvature at a polnt on an airfoil.

Bodies of revolution, completely supersonic flows, and the signif-

icance of the limiting solutions for potential flow are also briefly
discusgsed. =

INTRODUCTION

The problem of caloulating compressible potential flows past
aerodynamic shapes will be considered in this paper by the following
method: An assumpbion is made as to the variation of the curvature
of the streamlines in the flow field and the equations of motion,
expressed in terms of the streamline curvature, are thereupon
integrated.

Thig basic method of calculating fluid flowe is not new. It
has been described in reference 1 for use in calculating pressure
distributions on closely spaced airfolls in cascade. More recently
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the method was applied to the compressible flow pasb an isclated
airfoil and to the incompressible flow past a symmetrical airfoil
in a closed channel. The results of refeorence 2 are compared with
thoge of the present paper. ’

The method is applied to isolated ailrfolls and the results
are compared with those of references 3 and 4. The limiting solu-
tion for potential flow by this method is identified with the
"limiting line" phenomenon (reference 5) and discussed in relation
to the flow through a converging-diverging channel. Applicaticn of
the method to bodies of revolution is indicated.

THEORY FOR SYMMETRICAL AIRFOILS

The flows calculated in this paper sre of the steady, continuous,
igentropic, irrotational type. (Dee fig. 1.) The equations of
motion are coneldered in the following form: .

Equation of irrotationality (reference 6, p. 43):
v . -
S5t OV = o , (1)

Equation of continulty of mass flow:

e
PoVodn = pvdn ' (2)
0 0

Bernoulll's equation and eguation of state for isentropic flow:

1

1 :
o . - 712/ ve 7-1
MR

v velocity at a point P of flow field ' -

where
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n distance measured along potential line from airfoil (streamline)
to point P on streamline in flow field

n, perpendicular distance between same two streamlines in free
stream

C curvature of streamline at noint P, positive when streamline
1s convex in positive n direction. (C 1is the reciprocal
of the radius of curvature.)

P density

P pressure

¥ ratio of specific heats

M ' Mach number

The subscript o denotes free-stream conditions.

Consider the symmetrical flow past a symmetrical airfoil section
(fig. 1). The potential lines of the flow pattern are assumed
straight and perpendiculer to the free-stream direction, or x-direction,
thereby relexing the condition of orthogonality between stream and
potential lines. This assumption is exactly satisfied at the mid-
chord station of the section if the section has fore-and-aft symmetry
with respect to the mid-chord station. The assumption, in effect,
renders the analysis for one chordwise station independent of that
for another. '

The element of length dn in equations (1) and (2) is therefore
replaced by the elemont of length dy in the y-direction and equa-~
tions (1) and (2) are written, respectively:

&y = - 57 (4)
Yo A
! a e X

¥y = — = dy (5)
Jo Y Po Yo : »

The differentials in equations (4) and (5) are understood to be

taken in the y-direction at constant x. The lower limits of inbte-
gration in equation (2) are on the streamline that coincides with the
airfoll contour. The corresponding lowor limits in equation (5) are
therefore O and Y, respoctively, whore Y 1is the airfoil ordinste,
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a function of—the chordwise location x. The upper limits of inte-
gration in equation (5) are on a streamline that becomps parallel
to the x-axils at infinity; that ile:

lim y = ¥o

Naad S

Hence, the continuity condition (5) which for finite ¥y, ¥y, may
be written .

Y ¥ ’“‘yO

JO Jy Po Vo JY

becomses in the limit a8 y—o o

~oe

vo| [er . )dy (6)

vy Pov¥o

Without loss of generality, the froe-stream density pgs and
veloclty v, are hercinafter considored es unlty (or what is the
seme, p and v arc wriltten in placec of p/po and v vo, res ec-
tively). Combination of tho approximate irrotational condition

and the approximate continuity condition (8) yields

-y
Y = 1, —-——(pg;l) av (1)

in vhich the lower limit of integration, unity, is the freo-sgtream
veloclty at ¥y =&, and the uppor limit V, correspdtiding to tho
alrfoll ordinate ¥, 1s the unknown desired velocity at the alrfoll.

A streasmline curvature function is now to be chosen. It muast—
satiefy the boundary conditions of known airfoll curvature C, at
the surface of the alrfoll and zero curvaturc at infinity. For
convenlence, in the integration of equation (7), the curvature C is
choson a8 a function not of the coordinmtes x, y of tho flow field
diroctly but of the velocity v(x, y). Tho function chosen is

C=0Cy G%)n (8)

in which tho alrfoll curvature Cg, tho unknown aixfoll velocity
V, and the paramster 1 (which will be discusecd lator) aro func-
tions only of chordwise location x, honco are constent as far as
the integration in equation (7) is concorncd.
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The velocity v 1in the flow field 1s obtained by substitution
of equation (8) into equation (4) and integration (at constant x),

o9 _ _ - T av
1= - Lv(v-l)n (9)

The streamline curvature function C(y) determined by equations (8)
and (9) varies monotonically, as y Iincreases at constant x, from
the value O at the airfoil where y = Y to the asymptotic value
zero at y = o, The manner of thls variation depends on the known

alrfoll shape parameter TYCp, the airfoil velocity V, and the
paresmeter 1.

HId

The airfoil velocity V 18 given in terms of the airfoll shape
parameter TYCp, +the free-stream Mach number M,, and the param-’
eter 1 by equations (7), (3), and (8), which yield:

1
v[1 - Ly (v2-1)] l_1
= (v-1)9 ‘ [ 2
YCq = (V-1) . T av (10)

The parameter 17 i1s limited in its possible range of values by
the conditions that must be satisfled infinitely far from thes air-
foil, that-is, as v—l. These conditions are:

(a) The curvature C-0. - .

(b) The distance y—c.

(¢) The continulty integral (equation (10)) is finite. Condi-
tion (a) requires, by equation (8), that O<7n<ew. Condition (b)
requires that the integral in equation (9) diverge as the upper
limit v—l, which it does for 1<Tf<w. Condition (c) requires
that the integral in equatlon (10) converge at the lower limit, which
it does for -x<N<2. All three conditions thersfore limit the
pernissible range of 1 to

1<1n<?2 (11)

Equation (10) and condition (1ll) represent the basic result of
the present method. The velocity V at a point on the surface of a
symmetricel ailrfoil at a given subsonic free-stream Mach numbor M,
is obtained by assuming that the imown data are the shape. param-
eter YCg; &and the incompresssible, or low-speod, veloclty Vi at
that point on the airfoil. Tho parameter 7 is first obtained from
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equation (10) with My =0 and V = Vy. It will appear from later
applications that the value of n thus determired falls within the .
renge glven by expression (11) over the reglon of the alrfoil of -
groatest interest. With this value of 1, ogquation (10) then gives

the velocity V at the point under conglderation for the desired

Mach number My. g -

The main uncertainty of the present method is repredcnted by
the chosen curvature function given in eguation (8). Tho approxi-
mation involved in the use of this funoction has boon minimized by
tho method Jjust described of fixing the raremsters V and 17, By
this method the streamling-curvaeture function satisfies an approxi-~
mete form of the equations of motion (equation (10)) and yields the
known exact value of the airfoil wveloclty in the incompressible case.
Furthermore, the curvature function exactly satlefles the boundary
conditions of end values Cg and O and varles between these end
valueg in the correct general manner (for mtations near the maxirm
veloclity station), namely, monotonically.

As & further condition on the chosen curveture function, the
final solution given by equation (10) should reduce to the Prandtl- -
Glauert rule for small disburbance of the free stream. Thus, neg-
lecting powers of v-1 and V-1 egqual to or higher than the second,
equation (10) reduces to .
0 v v[l - %Moz (v+l}(v-1} = _} -1
YCq = (V-1) . el dv

J1 V(T-l)n

[ LG o
J1 (V"'l)n

- N
(1-M 2 ) (v-1)" f (v-1)¥" ay
1 )

or, integrating and solving for V-1,

/1342 G (12)

Bquation (12) shows that, 1f 1 1is adjusted to give the correct
value of V-1 for. My =0, or -

P

Vi-l = /2-1yv¥Cs (13)
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then the compressible value for any subsonic M, is given by

Vi-1 -
V-l = (14)

M2
which is the Prandtl-Glauert rule.
The foregoing considerations indicate that the results should

not be critical with reaspect to cholce of form of curvature fumction.
A gomewhat different foim of curvature funciion satisfying all the

foregolng conditions is
|
logeg v
Ce (Egg—v) (25)

Comparative results baged on this function will be discussed later.

C =

The basic relation (10) comnecting the velocity V (expressed
as alrfoll velocity increment V-1) at a point on a symmetrical
alrfoil, the airfoil curvature parameter ,/YC, at the same point,
and various free-stream Mach number M, is shown graphically in
flgures 2, 3, and 4 for % = 1l.4. The numerical data from which
these curves were plotted are given in tables I and II. Included
in tables I and IT ave some corresponding computations based on the
curvature function (15). The integral in equation (10) was evaluated
by Simpson’s rule and checked by the closed-form result obtainable

in the case 1 = 1. The velocity increrient above free-stream velocity

V-1 was plotted against v@@;, hereinafter called the curvature
reremeter, reather than against YCg ©because +YCg 18 proportional

to the thiclmess ratic of the airfoil (see, for example, equation (19))

and V-1 is therefore approximately linear with respect to this.
quantity for small values (equation (12)).

Figures 3(a) to 3(h) correspond to positive velocity increments
above free-streem velocity, that is, evaluation of equation (10) for

V>1. Figures 4{a) to 4(h) correspond to negative velocity increments

(V<) such as produced on surfaces of negative curvature and ordinate

(hence the negative gign attached to YC;). In this case tho curva-
ture function, instead of the one given by equation (8}, is properly
taken as

i (l_-_\:‘”
¢ =0 \i7)

vhich allows equation (i0) to be ovaluatod without ambiguity as
regards the terms to the power 1. The curves of noegative vslocity
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incroment (figs. 4{z) to 4(h)) may be rogarded as conblnuations of
tho zoggeBPOHding curros of posit;ve volocity increment (figs. 3(a)
to 3(h

It is of intorest to note that & parameter eguivalent to the
rarameter ,Jfba was derived by the authors of reference 8 from &
dimensional consideration of equation (4) and used +to correlate
critical Mach number data for various symmetrical airfoil sections,

APPT.ICATION AND RESULTS
Kaplan Section —

Kaplan (reference 3) has calculated the compresglble-~-flow zero-
lift velocity distribution for a partioular famlly of symmetrical
alrfolls. The method used was an extenslon of the Ackeret method
wherein the potential function 1s expressed as a power series in the
thickness ratic of the sgection. The corresponding serles for the
velocity distribution was evaluated to the term in the third mower
of the thickness ratio. A limiting value of free-sgtream Mach number
was found, for a given thicknoss ratio, above whlch the terms of the
power serles that were calculated (the first three) indlcated &
probable failure of the serles to converge. This free-stream Mach
number was presumed to constitute an uvper limit for the existence
of a continuous potential flow,

The method of the prosent analysis was tested by determining the
veloclty dlstributions for the Kaplan sectlion from figures 2, 3,
and 4 (drawn to a scale commensurate with the procision of the data
of .tables I and II). As an example of the proceduro uséd, the
velocity ilncrement V-1 for¥ the mid-chord location x = 0 of the
Kaplan section of thicknoss ratioc 0.10 was obtalned as follows. The

section ordinates and corresponding curvature parameter AV?EE are

glven in figure 5. The incompressible velocity distribution Vi-l
obtained by conformal mapping, is shown in figure 6 (M, = 0).

= 0 +the values »¥Cg = 00,1925 and Vi-1 = 0,1667 fromﬂfiguros 5
and 6, respoctively, corrospond in figure 3(a) to an_interpolated
value of 17 = 1.297. For these valucs of 7 -and ./ICs , the
voloceity increments V-1 for values of of 0.5, 0.7, 0.8, 0.85,
and 0.9 were interpolated from figures 3(c), 3(e), S(f), a(g)
and S(h), rogpectivoly., Veloclty incroments were obtained in this
manner in the chordwise rango 0<x<0,616. In the chordwiso range
0.616<x<1.0, the values of /¥Cgs are indicated in figuroc 5 aa
imaginary, resulting from a positive ordinate and & negative curvaturo.
The theory presented, based on the curvaturo functien of eguation (8),
cennot handle such values of tho curvabturc parameter. Approximate
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conpressible velncity increments were cbbtained in thils chordwise
rangs by first noting that the parameter m increased toward the
value 2.0 with increass in chordwise distance from the center

(fig. 5). DNow the limiting value 17 = 2.0 correspconds to the
Prendtl-Glauert rule, as will be shown wnder COMPRESSIBILITY CORREC-
TION RULLS. In the range 0.616<x<1.0; therefore, the compress-
ibie veloclty Increments were calculated from the incompressible
values by equation (14).

The velocity distributions thus obtained fox the Kaplan section
of thickness ratic 0.10 are shown In figure 6. The disgtribubions for

=0.85 and My = 0.9 do not extend all the way to the mid-chord
location but come to an end (with infinite slope) at the chordwise
locaticne x = 0,145 and 0.390; respectively. The imuediate reason
for this behevior im evident from figure 2. For example, at the
limiting locatlon x = 0.145 for Mgy = 0.85, +the value of 71 was
1,312 (fig. 5). On the set of basic curves For M = 1,312 and
similar in appearance to figure 2, & vertlcal line drawn at
A'¥Cg = 0.181 corresponding o x = 0.145 would be tangent to the
Mg = 0.85 curve, at which point the velocity increment V-1 would
be 0.550. No solution exists at this value of ,IC, for My higher
than 0.85; or, for fixed My = 0,85, mno &solution exists for higher
values of 4/¥Cz such as correspond to chordwose locations closer to
mid-chord than x = 0.145, The points of infinite slope on the basic
curves of figure 2 corrvespond to a limiting solution for potential
flow by the present method. This phenomenon, hersinafter called the
"potential limit phencmenon," is discussed in appendix A.

The potential limit points for the Kaplan 10-percent section at
Mo = 0.85 and 0.9 were actually obtained from accurately determined
plota of the infinite slope loci of figure 3. These plots are given
in figure 7. The vacuim~line boundary curve In figure 5 corresponds
to P/Po = 0 in equation (3). The intersection of the curve of 1

against /Y0, for the Kaplan 10-percent section (fig. 5), with, for
oxample, the My = 0.85 contour in figura 7{a) detormined the voten-~
tial limit values of 71 and A/¥C, hence by figure 5 determined
the chordwise location &t which & potential limit voint existed for
M, = 0.85. The notential limit value of n then determined the
potential limit V-1 by figure 7(b). The free-stream Mach number
at which the mid-chord location x = 0 1is & potential limit point,
that 1s, the lowest My at which & potential Jimit occurs, is
indicated by point A in figuro 7(a). By interpolation this limit
value of M, 1is ostimated as 0.843 and the corresponding V-1

(fig. 7(b)) as 0.573. For comparison, the lower critical Mach
number (the lowest freo-gtream Mach nuuber at which sonic velocity
occurs on the airfoil) was determined as Q.748.
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The wvelocity distribution at the lowest potential limit Mach
number, obtained by interpolation from the other velooity distribu-
tions, 1s shown in figure 6. The velocity gradient at mid-chord
apnears to be finite and different from zero. The reason for this
behavior can be seen from the expression for the velocity gradient

av v C Vv d
oV _ ¥ 3V dn : (16)

dx 234/¥c, dx 3n ax

in which the first partial derivatlive is taken at constant n and
the second at constant ICq - (The acceleration of the fluid along
the surface & of the alrfoil is V %g. Hence, the following dis-

cussion applies also to the fluld acceleration.) At a pobtential
limit point both 3V/3y¥Cq end 3V/3n are infinite (fig. 2). If

dﬂYCa/dx ‘and dq/dx are not zero at the chordwise station corre-
sponding to a potential limit point, the velocity gradlent- dV/dx is

infinite there, as is the case with the velocity distributions for

Mg = 0.85 'and 0.9 in figure 6. If d&¥Ca/4x and dn/dx are zero,
which 18 the case at the mid-chord station of the Kaplan lO0-percent
section, the occurrence of a potential limit at this point leads to

an indeterminate expression for the velocity gradient in equation (16).
Cloger analytical and graphical examination indicates the finite
gradient shown iIn figure 6 (hence, a finitely discontinuous change in
fluid acceleration-across the mid-chord station).

The lowest potential limit values of My, the corresponding
values at mid-chord of V-1, and the local Mach number M for’
symretrical sections of three thickness ratics (t = 0.05, 0.10, and
0.20) were computed. The value of M was obtained by cowbining
Bernoulli's equation in the form of equation (3) and in the form

7-1
L7 y-1 2
14+ == ]

<f£:> = z_ o - (17)

Po 14 i
2
resulting in . '
v
M e ~ (18)

4/1 - L2 M2 (vE-1)

The values are listed in the following table and compared with values
obtained by Kaplan in reference 3:
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Curvature method Kaplan method
Mo V-1 M My V-1 M

——ta

0.0 0.898{0.324|1.265}0,890{0.249]1.164
.10 .843] .573|1.491] .833] .456]1.320
20 .76311.200{2.257| .743| .864|1.625

The limiting values of M, by the two methods agree fairly closely;
the values of V-1, hence also M, less so. The less satisfactory
agreement of V-1 18 to be expected from the rapldity with which
V-1 varies with My In the neighborhood of the potential Limit
solution (fig. 6).

The comparison of the wvelocity distributions for the l0-percent
thickness section by the two methods is given in figure 8. The
velocity distributions for My = 0.75 (fig. 8(b)) and 0.83 (fig. 8(c))
were obtalned by interpolation from cross plots of the velocity dis-
tributions of figure 6, guided by the potential limit points previ-
ously determined. In the region of greatest interest on the contour,
namely the supersonic region given approximately at My = 0.83 by
0<x<0.4, the velocity by the Kaplan method increases with My at
a greater rate than the velocity by the curvature method. A conven-
ient criterion of the accuracy of velocity distributions in local
supersonic regions has been pointed out by Tsien and FeJer, namely,
if a velocity distribution indicates a local supersonic region, a
veloclty distribution can be derived in this region that must be
groater than the original velocity distribution; the difference
between the two distributions decreasing as the extent of the local
supersonic region increases. This greater veloclty distribution
for the supersonic region is the well-known Prandil-Meyer solution
for the flow over a curved surface (reference 8(a)). The Prandtl-
Meyexr velocity distribution extends, in the case considered here,
from the chordwise location for a local Mach number M = 1 %o the
mid-chord location. The Prandtl-Meyer molution is obtained from
the change in slope of the sirfoil surface A9 from the M =1
location to the point under consideration. This change in slope
ex)ressed in degrees is equivalent to the pressure number P, which
is a function of the local (supersonic) Mach number M. From & plot
of slope & _of alrfoil surface against x, included in figure S,
and & table of P against Mach angle, it 1s therefore a simple
matter to obtain the Prandtl-Meyer local Mach number distribution in
the supersonic region. The local Mach number M and the free-stream
Mach number M, +then determine the local velocity V by egqua-
tion (18). If the pressure number P is defined in terms of the
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flow deflection angle A8 asm P = 1000 - AP, +the pressure nuwber
may be ccmputed by the methods of reference 8{a). The variastion of
pregcure number and flow defiection angle with Mach angle ls shown
in the following table:

PRESSURE NUMBER AND MACH ANGLE IN PRANDIL-MEYEK

SOLUTION FOR SUPERSONIC FLOW

Ly = 1.4]
Pressure |[Flow deflec-~ | Mach angle
number, P |tion angle _ =1 1
"7 a8 = 1000 < p | =BT L
(deg)
1000 0 90° 00!
999 1 670 43!
998 2 62° 00!
997 3 580 10!
296 4 440 12!
995 5 520 43'
994 6 500 36!
993 7 480 43!
992 8 470 03’
g9 "9 450 321 -
990 10 440 09'
989 - 11 420 51
988 iz 410 33,5
987 13 400 32.5' -

The Prandtl-Meyer solutions: obtained in this manner for the
velocity distributions by the Keplan method and by the curvature
method are shown in figure 8(c). The velocity distribution obtained
by the curvature method is evidently closer bto the trus distribubtion
than that of the Kaplan method in the local supersonic region for
My = 0.83, Dbecause the curvature velocity distribution is less and
the Kaplan veloclty distribution is greater than the corresponding
Prandti-Meyer distribution. Application of the Prandtl-Meyer solution
to the potential limit velocity dilstribution by the curvature method
for My = 0.843 (fig. 8(d)) indicates a rapid decrease in validity
of the resulte by the curvature method for free-gtream Mach numbers
cloge to.the lowest potential limit Mach numbér.
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From these and similer calculations for thickness ratio of
5 and 20 percent, 1t is concluded that the curvature method gives
resulta of at least the same order of accuracy as the Kaplan method
over approximately the middls half of the Kaplan section. Over the
reat of the gection the Kaplen method way well be more accurate.

Biconvex Section

The method of curvature may be expected to increase in validlty
with decreage In the variation of the curvature parameter JYCa
along the airfoil. The symmetrical biconvex section (ons formed of
two circular arcs) was considered as an example which is more favor-
able 1n this respect than the Kaplan sectlon. The biconvex section
of 0.20 thickness ratio was analyzed for its incompressible velocity
distribution by conforwmal mapping. The curvature parameter Jica
was calculgted from the relstion

A2 &

YC, = (13)
41.+ £2

in which Ypgx i the section ordinate at the mid-chord locatlon
end t 1is the thickness ratio, The section ordinates Y, the
glope 6, +the curvature parameter 4/Y¥Cg, and the parameter 1,
determined as for the Kaplan 0.10 thickness ratio sectlon, are
given in figure 9. The velocity distributions for My = 0, 0.5,
0.7, and 0.8 are given in figure 10. The curvature method cannot
handle velocities less than the free-stream value (unity), which
correspond to positive values of the curvature parameter; these
velocities were obteined by the Prandtl-Glauvert rule.

The lowest free-stream Mach number My for which a potential
limit occurs at mid-~chord ia 0.790. The corresponding values of
local velocity increment and local Mach number are 1.818 and 1.704,
respectively. The Prandtl-Meyer solution (fig. 10) indicates
inadequacy of the curvature method in this case at & free-stream
Mach number somewhat less than 0.8. The local velocity increments
of the biconvex section of thickness ratio 0.20 are higher than
those of the Kaplan section of thickness ratio 0.10. The ratlo of
the increments of the biconvex section to those of the Kanlan section
of thickness ratio 0.10 are, in general, less than the ratlo of the
thicknesses of the two sections.

CONDITIONS IN FIELD OF AIRFOIL

The variation of sbreamline curvature and of local veloclty
with distance from the airfoil is given by equations (8) and (9).
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For the purposs of illustration, it will be sufficient first-to
make the simpler calculations corresponding to the curvature func-
tZon (15) in place of (8). Hguations (4) and (15) yield
(loge V)" d(loge v)
Ce (logg v)®

dy =

which, after integration and adjustment of the constant of integra-
tion to satisfy the boundary conditions, becomes

log, Vv [7log, vVI~1
=14 00 T ° - (20)
¥C, (n-1) logg v
The curvature variation is given by equations (15) and (20). For

1 = 1 these equations are indeterminate. In this case, equa-
tions (4) and (15) (or the well-known limiting form of equation (20))

i

yield _ .
log, V logy, V
L=1 Qo Jogy | ——am =1 (21
Y-t o, %% \log, v 1 (21)

The curvature and velocity variations given by eguations (15),
(20), and (21) are shown in figure 1l end 12, respectively, for
various values of n and M,. The value of YCu of 0.03704 chosen
for the calculation was that corresponding to the mid-chord location
of the 10-percent thick Kaplen sectlion., The correspohiding values of
V for the various M, were those previously computed for the Kaplan
10-percent thick section. Although these values of ¥V correspond
to only a single value of n based on the curvature function (8),
the use of these same values for various 1 and with the curvature
function (15) give the trend of curvature and velocity variatilons
sufficlently well for_the purpose of illustration. The curvature
and velocity variations of figures 11l and 12 show the expected
trend with free-stream Mach nuwber M,, namely, e slower decrease
to free-stream conditiona as My, is increased. The limitation of
a single curvature function such as equation (8) or (15) is apparent
from figure 13, for it yields baslically the same kind of curvature
variation in the supersonic region as in the subsonic region. A
more rigorous analysls should take into explicit account the different
type of curvature variation found in supsrscnic flows.

The extent of the local supersonic regions in the fleld of the
10~-percent thick Kaplan sectlon was next calculated by the more
appropriate equation (S), using the data derived in connection with
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the velocity distributions. The results are shown in figure,l4, in
which the local Mach mumber M = 1 boundary is plotted for M, = 0.75,
0.8, 0.83, and 0.843 in terms of alrfoll semichord as unit dletance.

The rapid Increase in lateral extent of the supersonic region
with Increase of free-stresm Mach number, particularly near the
potential limit, 1Is apparent in figure 14. At the potential limit

= 0.843, +the local supersonic reglon extends laterslly into the
flow field & distance of about 1 chord.

The finite nonzero slope at x = 0 of the sonic boundary at the
potential limit should also be noted. This finite slope is associlated
with the finite velocity gradient at the surface of the Kaplan section
previously diascussed. It appears from equation (9) that the slope of
a constant velocity (kence, for given My, constent M) boundary
will be associated with the surface velocity gradlent at the same
value of x in being finite or infinite. Henceé, if the lowest poten-
tlal limit solubtion occurs at a point on a symmetrical airfoll at
which d+/¥0,/dx, dn/dx are not zero, then the consequent infinite
volocity gradient at that point on the surface will cause a cusp in
the M = 1 boundary in the field. This cusp (the possibility of which
was suggested by L. Richard Turner of the NACA Cleveland staff) smounts
to an envelope of the Mach lines in the (supersonic) neighborhood.
This behavior is in agreement with a known property of potential limit
solutions, namgly, that a potential limit point in a flow field lles
on an envelope of Mach lines (refersnce 5).

AY

CIRCUTLATORY FLOW PAST CIRCUIAR ARC MEAN CAMBER LINE

The curvature method was next applied to the calculation of the
type of velocity distribution that produces "design" 1lift, that is,
1ift without a velocity peak near the nose of the airfoill. The
clrculal arc camber line at zero angle of attack was chosen for this
calculation in order that a comparison enalogous to that for the
Kaplan section could be made (reference 4). The camber ratio assumed
was 4 percent, corresponding to an incompressible design lift coef-
ficient of 0.520. '

A difficulty of principle arises in obtaining the curvature
parameter AfYCg for the circulsr arc section. The ordinate Y as
developed in the curvature method is actually the component in the
y-direction of the distance between a point on the airfoil contour
and g point on the airfoill streamline Infinitely far from the airfoil
(the airfoil streemline is the streamline that includes the airfoll
contour). In the case of the symmetrical airfoil, this projected
distance is the airfoll ordinate as measured from the chord lins.
When 1lift 1s produced, however, a point on the airfoil streamline
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infinitely far from the airfoil in the x-direction is also infinitely
far from the alrfoll in the y-directlon. Neverthelegs, inasmuch as
the slope dy/dx of the airfoil streamline for the circular arc
rapidly approaches zero with increasing distance from the circular
arc, it might be expected that the velocity dlstributlon on the
circular arc would not be critical with respect to the finiltely
distant point on the airfoill streamline from which the ordinate Y

is measured.

This situation was atudled by obtaining in the usual mannsr the
compressible veloclty increment at the mid-chord location, for ourva-
ture parameters ,/YC, corresponding to verious values of Y as
determined by points on the incompressible (M, = 0) airfoll stream-
line at various distences from the circular arc. Tho resulting
velocity increments (V-l)pgy are plotted for various Ffree-stream
Mach numbers M, in figure 15 against a quantity £ characterizing
the distance along the airfoll streamline. The quantlty f ie the
ratio in incompressible flow of the velocity decrement &t & poinbt -
on the alrfoil streamline to the maximum veloclty incremont-on the
circular arc. As the variable point on the airfoil streamlins
approaches the circular arc, tha value of 1n decreases from 1.28 at
f = 0.0032 "to the lower limiting valuve 1 at f = 0,0102 correspond. -
ing to a digtance of Q.87 chord from the extremity of the circular
arc, ‘At points on the streamline closer to the circular arc there
ls no value of n that ylelds the known Incompressible maximum
velocity increment for the corresponding value of 4Y¥Cg. Compressible
maximum velocity increments for these points were thereupon arbitrerily
obtained from figure 2 using 7 = 1.

Included in figure 15 are the meximum-veloocity increments
calculated from the formulas and constants given in refurence 4.
The waximum~velocity ilncrement by the curvature method is seen to
be always less than Kaplen's value and not to vary greatly with f£.

Guided by the results for the Kaplan lO~percent thick symmetrical-
section, which hdd about the same incompresslble maximum veloclty
increment as the 4~percent camber circuler arc mean line, and also
by the comparison with Kaplen's results in figure 15, the curvature
parametor ,VYCa for obtainling complete velocity distributions was
determined with respect to a reference point on the airfoil streamline
at which the incompressible velocity decrecment was 1 percent of the
meximum velocity increment (f = 0.01, 0.68 chord from leading edge).
The basic data are given in figure 16 and the resulting veloclty
distributions are compared with the corresponding results by the
Kaplen method in figure 17. The velocity distributions at My = 0.8
by both methods are lesss than the Prandtl—Meyer solution by about



NACA TN No. 1328 17

the same amount and no definite conclugion as to the comparative
accuracy of the two methods is indicated. The uncertainty introduced
into the results by the ambizuity of determinetion of the curvature
parameter 4 ¥Cg could presumably be further resolved by additional
comparisons with resulte by other methods or by calculation of higher
gnproximations by use of the strsamline curvaturs.

COMPRESSIBTILITY ~CORRECTION RULES

A compressibility-correction rule may be defined as a rule by
which the velocity or pressure at a point of a compressible flow fileld
is expressed as a function only of the low-speed, or incompresseible,
velocity or pressure at that point and the free-stream Mach number.
Thus, the curves of figure 2 when crose-plotted against My constitute
a got of compresgibility-correction rules for the velocity V. Im
general, each value of 7 yields a compressibility-correction rule.
The rules for n = 1.0 and n = 1.8 are shown in figurs 18 1n terms

of the pressure coefficient Cp defined as
2 -1
p- D
Cp =71 poz ='7° 2 (22)
> Povo z Mo

in which p/p, i& given in terms of the velocity V by equation (3).
Also shown in figure 18 are the potential 1limit curves, obtained from
figure 7(d), the scnic line (M = 1 in equation (17)), and the abso-
lute limit or vecwum line (p/p, = O 1in equation (22)). The differ-
ence between ths rules for different valuss of illustrate the
allowance for differendes in airfoil shape —52) which correspond
to the same low-spoed pressure coefficient. o

Fach compressibility-correction rule has 1ts own potential limit
curve. The limit curve for 1 = 1.8 intersects the vacuum line and
would extend to local velocities higher than that corresponding to
zero pressurs, which of course is imposeible., Hence, where a potentlal
limit curve intersects the vacuum line, the vacuum line becomes the
limit curve.

In figure 19 comparison of the compressibility correction rules
by the curvature method is made with the rules of

(a) Prandtl-Glauert, equation (14)

(b) Kaplan (reference 3) results for mid-chord location

log, v N
(c) The rule for 7 = 1.0 based on function (15), C = Cqy (————)
logy, V
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(&) Groene (reference 2)

(e) Garrick-Kaplan, "arithmetic-mean"” rule of referencs 10
(f) von Kérmén-Tsien, equation (62) of reference 9

Portions of the potential limit curve corresponding to each rule
ars indicated. ) B

The compresgsibility-correction curve corresponding to the
curvature function (15) rises somsowhat more steeply Than that corre-
sponding to equation (8) for the same value of n. It should be
noted that the two compressibility correction rulvs for n = 1 do
not indicate the difference in calculated pressure coefficlent at a
given point on an airfoil (givon /Y¥Cg)} as a result—of choice of
curvaturs function. In f e 139 the curve for survature func-
tlon (15) corresponds to 4/¥C, = 0.305 and tkat for durvature func-
tion (8) to 4¥Cy = 0.317. For a given value of 4/IC, end low-spoed
pregsure ccefflcient, the results by both curvaturo %unctions differ

negligidbly.

The Prandtl-Glausrt rule has been drawn in figure 19 to the
vacuuwm line (M = o) because this rule can bs rugarded as the limit
of the rules derivable by the present method as n approaches the
value 2.0. This fact becomes evident—from equation (10), in which,

- n approackes 2.0, the velocity V must approach unity in ordar
for the integral to converge. . The approxlmation leading to the
Prandtl-Glavert rule (equation (1l4)) cen therefore ve made. As 1
approaches £.0 the vacuum line becomes a greator and greater portion
of the complete potential limit curve (£ig. 18) until in the limit
the vacuum lins becomes the entire potemtial limit curve, (See
figs. 7(b) and 7(d).)

The Greens rule, on the other hand, can be regarded as the
limiting rule obtained by allow1ng n to approach zordo. For n = O,
equation (10) becomes

1

v 2
- 7-1
YC,, =U/q [? - Zgi'sz (vz-lj] dv - log, V (23)
1

= (V3 - 1) - log, Vy

This last equality, namely V as a functlon of V; and M,, is
Groene's rule. As has becn shown, the significance of 7 = O is
that the curvature. C becomes zero st a finlte distance from the
airfoil and remains zero for greater dlstances. Although this
circumstance might imply a severe limitation on the validlty of
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Greene's rule, this particular derivation is actually more restric-
tive than neccssary for it leads not only to Greene's rule but to
the additional equation involving IC,. A more general discussion
of Greene's rule is given in sppendix B.

In general, the compressibility-correction curves derived in
this paper lle bebween the Prandtl~Glauert curves on the ons hand
and (approximately) the von Kédrmin-Teien curves on the other. It
may be emphasized here that the presentation of the present results
in the form of a set of compressibility correction rules does not
imply an equivalence of these results to a simple speed dlstortion
of the flow field in going from incompressible to compressible flows.
Evidently any derived set of compressible-flow patterms for varlous
free-gtream Mach numbers can be compared with the corresponiing
incompressible-flow pattern by means of a set of compressibility
correction rules. A simple speed distortion implies the existence
of only a single compressibility correction rule from which
compressible-flow boundary velocities are obtained from given
incompressible-flow boundary veloclties regardless of the shape of
boundary that produces the incompressible-flow velocitlies. The
present results, however, yileld different compressible-flow veloci-
ties for the same incompressible velocities depending on the shape
of airfoil (4f¥Cy) that produces the incompressible velocitiles.

SUPERSONIC FLOW

In completely supersonic isentropic potential flow the same
equations of motion hold as in the subsonic case, namely, in the
form assumed in this paper, equations (1), (2), and (3). The appli-
cation of these equations, however, to the calculation of the super-
sonic velocity distribution on airfolls is in certain respects dif-
ferent from the subsonic calculation. The differences as well as
gimilarities will be illustrated by derivation of the linecarized
(small perturbation) equation for the velocity distribution on an
arbitrary thin airfoil in supersonic potential flow. )

For small perturbation of the free stream the approximstion for
the density ratio that led to squation (12) is

ov - 1 = (1-M2)(v-1) (24)

Equation (7) therefore becomes

v
Y = -(M,2-1) [ Sy_a_l_)_ av (25)
Jl
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The curvature C 1is by definition dp/ds where s is the distance
along & gtreamline and B 1s the (positive clockwise) angle between
the stroamline and a fixed (say the free-stream) direction. Equa-
tion (25) may therefore be written -

8g .
Y = -(Moz-l)ﬁ (v-1) d‘g s (26)

in which the path of integration is determined as follows: The
assumption is made that at a point in the flow fleld apy field
quantity, such as v, dv/dP, or ds, is constant along a straight
line comnnecting the point with a point—on the airfoil &nd mseking an
angle u with the free-streem direction. (See sketch.)

A4

A\ 4

Completely supersonic potential flow -

By this assuuption a correspondence is set up between points in the
Tiold and points on the airfoil for which the integrand in equa-
tion (26) has the same valus. Hence the original path of integra-
tion from infinity to a point on the alrfoil in a direction normal
to the airfoill can be renlaced by a path along the airfoil itself,
from the leading edge to tho seame point, at a distance- sy from the
leading edge (the contribution to the integral from points upstream
of the leading edge 1s zeroc because for such points the straight
lins at angle p on which the fisld gquantities are comstant does
not intersect the airfoil and extends infinitely far ahoad of the
airfoil, where frec-stream conditions exist).
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Differentiating both sides of equation (26) with respect to ths
distance sg along the alrfoll contcur yields

& LM 2-1)(v-1) &X . 27
- = -0%P1) (v-1) e
But E—: - B. Hence
dSa -
yildv _ 1 _ (28)
P ap m2a ] |
Inasmuch as all variables have been assumed to differ from thelr
free-stream values by small amounts, the gquotient vl can be set

equal to the derivative dv/dB. Equation (28) therefore becomes

av . 1 (29)
apg ;]Moz_l

Finally the significance of the angle p 1is obtained from equa~
tions.(4) and (29), and the sketch of completely supersonic potential
flow,

tan“,=Q'-X= - dv = —g'_.!
ds Cvds ap
=t ' - (30)
Moz-l Z
or - . : s s .
gin p = o= (31)
Mg

Hence p 1is the Mach angle and equation (29) can be written

%%:itanu o (32)

which (recalling that the fres-stream velocity is unity) is the
basic solution for linearized two-dimensional supersonic flow
(reference 8(b)). All the properties of linearized two-dimensional
supersonic flow can be deduced from the preceding derivation (these
properties were, of course, a guide in setting up the derivation).
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The fact that the linearized theory for completely supersonlc
flows relates streamline curveturss at points connected by Mach
lines {characteristice) would -indicate that in obtaining higher
approximations to the flow pattern in large local or completely
supersonic regions the curvature function should properly be spec-
ified along Mach lines rather than along normals to the free-gtream
direction. This clircumstance indicabtes a possible refinement of the
pregent treatment for mixed subsonic-supsrsonic flowa. Consider a
mixed subsonic-supersonic flow nattern calculated by the curvature
method. The curvature in the local supersonic regilon can be assumed
constant (axd equal to the corresponding airfoil curvature) along
the characteristics emanating from the airfoil at the appropriate
local Mach angle. The curvature function thus determined is contlin-
uously Joined to the curvature function previously calculated at
the boundary of the -supsrsonic region, As a guide in this process
the curvature of the stroasmlines determined by the original calculatlon
could be used (this information would also be of use in detsrmining
higher approximations throughout the entire flow field). The egua-
tions of motion (1), (2), and (3) are thereupon integratvd, graph-
ically or otherwise. If the local supersonic region is small, this
procedure may not yield more accurate resulte than the original
calculation. It may, however, yleld a closer svaluatlion of the
accuracy of the original calculation than the Prandtl-Meyer solutlon
applied to the local supersonic reglon.

The preceding remarks also make evident the possible occurrence
of & curvature meximum sway from the alrfoil (in a direction normal
to the free stream). Such a maximum will probadbly occur in a large
local pupersonic region when the point under consideratlon on the
airfoll is preceded along the alrfoil by points of greater airfoil
curvature. ' — -

BODIES OF REVOLUTION

The method given for the two-dimensional flow can bo applied
similarly to the case of axially symmotric flow over & body of
revolution., Thus, if the symmetrical section (fig., 1) 1s considered
as a meridian sectlon of a body of revolutlon the continuity con-
ditio? (equation (8)) becomes (free-mtream vclocity and density are
unity),

o -

Iz?.s (ev-1) yay (33)
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The irrotationality condition (equation (1)) and the Bernoulli-state
equation (3) remain unchanged. IFf the curvature function (8) is
assumed, substitution of equations (3), (4), and (9) into equa-

tion (33) yields an equation analogous to (10). From this equation
a set of basic curves analogous to those of figure 2 could be derived
by computetion. (The computations would be lessened by use of the
curvature function (15) instead of (8) because equation (20) is
easier to evaluate than equation (9).)

It will be sufficient here to indicate the results in the case
of emall disturbance of the free stream, or v—l. In this case
equations (9) or (20) yield

(V-1) v-1 )17t
F-1-= Y6, (n-1) [<V-> '1] (3e)
Substitution of equations (24), (34), (4), and (8) into (33) gives
(v-1)2 [1 P ]: (2-n) ¥Cq (35)
YC, (3-27) (1-M32) 2

It may be shown as before that the parameter 1n 18 now restricted
to the range

1€ n< 1.5 - (38)

The parameter 1n can again be taken as the value that in equa-
tlon (35) yields the exact (known) velocity increment for M, = O.

Equation (35) differs in form from the corresponding expression
for two-dimensional flow given in equation (12) by virtue of the
second term in the brackets. The effect of this term is to reduce
the velocity increment for a given M,, +that is, to reduce the
effect of speed on the local velocities and pressures. For example,
the increase with free-stream Mach number My of the maximum velocity
increment on slender ellipsoids of revolution is by equation (35)
about 70 percent of the increase given by the Prandtl-Glauert rule.

If the curvature function is chosen as

o~ (3] (1)
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then with £ = 1 a basic equation the same as (10) 1s obtained,
YC
with the exceptlon that .:§ replaces Y¥Cy on the loft-hand side.

Hence the same baslc computations ag already made for-the two-
dimensional case could be used here (with 1= n <2). Although a
more gredual rise of velocity increment—with Mach number 1s thus
obtained than for the same section in two-dimensional flow, the rise
is greater than given by the Prandtl-Glauvert rule, The Prandtl-
Glavert rule ig, in fact, again the limiting rule for small disturb-
ances, It seems, however, that the Prandtl-Glauert rule may over-
egtimate the effect of subsonic compressibllity epeeds on slender
bodies of revolution.

Porhaps the most reliable way of obtaining compressible veloclty
distributions for bodies of revolution by use of a single curvature
function is to use the function (37) with n and ¢ .adjusted in
pach case to satisfy voth the known incompressible value and the
compressible value for. infinitegimally small disturbance of the
gtream, the compressible value being conalderod as knowrn or ovtainable
from the general linsar-perturbation theory of compressible fluilds.
The permissible values of 1 and £ +that setisfy the required
conditions at infinity lie in the mcute=angled sectors of the
against 1n plane bounded by the lines 7m =1 and £ = 2n - 3.

SUMMARY OF RESULTS —_— -

The present study of compressible potential flows past aero-
dynamle shapes indicates- the following:

1. The mwethod presented for the calculatlon of compressible -flow
veloclty distributions yislde results for symmetrical sections in
satlisfactory agreement with existing resuits based on” calculation to
the third order in the thickness ratioc., @ - e

2. The results can be presented in the form of a set of
compreaelbility-correction rules that lie between the Pranditl-
Glauert rule and the von Kirmén-Tsien rule (approximately). The
different rulesg correspond to different values of a local shape
parameter 1J§Ea, in which ¥ 1s the ordinate and Cg, 18 the
curvature at a point on an airfoll.

3. The effect of circulation at desigm lift conditions, that
is, without velocity peesks, can ba taken Into account.

4, Conditions in the fileld of the &alrfoil can be oalculated
simply.
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5. The method given for two-dimensilonal £low can be applied
also to bodiesg of revolution.

6. The general method of using the streamline curvature appears
applicable to any subsonic or supersonic flow problem in which a
satisfactorily accurate estimate of the curvature of the streamlines
can be made in the portion of the flow Pield of interest.

Flight Propulsion Research Laboratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohic, May 24, 19486,
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APPENDIX A

.IEE POTENTTAL LIMII' PHENCOMENCN AND THE ARALOGY
WITH FLOW THROUGH A CHANNEL

The points of infinite slope on the basic curves (figs. 2
and 3) have been seen to correspond to limiting solutions for
potential flow by the present curvature methcd. These points cor-
respond to points-on an airfoll at which the local Mack number M
1 zreater than 1 and at whick the fluid acveleration is infinite
if &/TC,/ds and dn/ds are not zero. Furthormore the M = 1
boundary in the flow field containes a cusp If the fluld at the
laterally corresponding point on the airfoil has infinite accol-
eration, This cusp congtitutes en envelope of the Mach Lines in
the (supersonic) neighborhood. These properties permit identifi-
catlion of the pointas in the flow fileld corresponding to polnts of
infinite slope on the basic curvoe with polnts on tho limiting line
of reference 5. - R S o T '

In the determination of the essentlal roason for _the oxistence
of a limiting potential flow solution, as well as tho _significance
of the possibilitiecs &/iCa/de = dn/ds = 0, tho analogy with the
flow through a converging diverging charmel i1eg iliuminating. Con-
pidor first the one-dimensional flow through the channel. The
zquation of continuity can be writton . o

pVA = 1 - (38)

in which A is the cross-secticnal area of the chamnel and all
quantities arc expressed as fractions of thelr values at a referonco
atation O upstrecm of tho minimum section, called tho chamnel froe-
stroam station. Equation (38) yields with equation (3) a family

of curves of velocity V egalnst arce A with channol frec-stroam
Mach number M, as parameter (fig. 20). Theso curvos oxhibit
points of infinite slope analogous to those of figure 2. If for
the moment only subsonic flow in the channel 1s consldsrud (branch
BC in fig. 20), thero exiets at C = minimum channel area for
given M, or for given channel area a meximm M, for continuous
one-dimensional flow. The 1uld acceloration along tho axis x of
the chamnel 1s -

Vs— =V 3+ == : (39)
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in which, by equation (38), (18), and (3)

av v :
— = —————— 40
At a point of infinite slope in figure 20, dV/dA = «=; hence the
fluld acceleration is infinite unless possibly dA/dx = 0, Ths
limiting solution occurs, by equation (40), at a local Mach number
of unity. Thus, by a onse-dimensional argument Independent of the
irrctationality condition a limiting solution analogous to that for
the isolated airfoill has been derived. It may be noted that the
upper-branch solutions CD (fig. 20), as well as the upper-branch
solutions of the basic curvee (fig. 2), correspond to the over-
lapping supersonic flow patterns that have been obtained by the
hodograph method. (See reference 1l.)

The analogy between the channel and the isolated airfoil can
be made still closer by conslderation of the two-dimensional features
of the flow in the minirum section of the channel. As the channel
free-stream Mach number M, 1is increased by increasing the over-all
pressure difference across the channel through external means, the
maximum local Mach number at the wall increases at a greater rate.
For a sufficiently high but subsonic My, local supersonic regions
appear in the neighborhood of the walls (fig. 21). This flow
pattern corresponds to the solution s trical with respect to the
y-axis studied by Meyer (reference 12), G. I. Taylor (reference 13),
and others. It is analogous to the continuous mixed subsonic-
supersonic flow pattern for isolated airfoils, The one-dimensional
continuity treatment indicated an upper subsonic limit for M,.

The two-dimensional flow pattern for channels indicates a slmilar
upper limit on My, and, in addition, provides the desired insight
into the isolated airfoil case,

The limit on M, comes about because the flow at station O
(fig. 21) must pass through the minimum section. The local mass
flow intensity pv 1s, however, & maximm at a local Mach number
of unity and will be less than the flow intenslty at the channel
freoc-gtream station in portions of the local supersonlic regions AB
and FG, which increase as My 1is increased. When a further increase
in extent of the local supersonic regions would result in a decreased
mass flow through the minimum section from the cause just indicated,

"then the mass flow has reached its maximum possible value and the
chemnel 1s said to be "choked."

The explanation for the limiting solution in the isolated air-
foil case is similarly formulated. Along the potential line AD
traversing the local supersonic region (fig. 1) the mass flow
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intensity ratio EE%— is a maximum abt the sonic point C and less
oVo
than unity over a section AB in the supersonic region., When the
mess flow intensity, integrated over BD, produces an insufficient
mass flow to counterbalance the decreased contribution to the mass
flow acrose AB in accordance with the requirements of continuity
and isentropy (equation (6)), then the limit solution for point A
on the alrfoil hae been reached. The flow field, though infinite
in extent, can under this condition be saild to be choked. Bvidently
& local supersonic region must exist before the limiting velocity is
reached,

The essentially one-dimensgional continuity argument Just gilven
is not entirely sufficient to prove the existence of a limit solubion
in the two-dimensional case. Eguation (6) alone, for exammle, could
alweys be satisfied by a suitable choice of v(y); or large stream-
line curvatures resulting in large flow deflections might set in at™
supercritical speeds, thus destroying the validity of equation (6).
These possibilities are eliminated by the Irrotationelity condition,
which controls and limits the lateral variation of velocity in the
flow field. Thus, the isolated airfoil limiting solution is actually
produced by the combination of irrotationality, continuity, Bernoulli's
equation, equation of state, and boundary conditions in equation (10).
The condition of completely irrotational flow is not, however, abso-
lutely necessary for.a limit solution. Rotational flows characterized,
for example, by almost any function of v on the right~hend side of
equation (ls would yield limit solutions, at least for small values
of the function (rotetion), The equations of motion in the form
analyzed appear, in fact, to offer a convenient means of including
rotational effects and effects of changes in the equation of state.

Finally, some remarks are mwade concerning the possible relation of
the actual shock wave on an airfoil in the mixed subsonic-supersonic
(supercritical) flow regime to the potential limit solution. As noted
in references 5 and 14, the observed shock on an airfoil in the super-
eritical flow regime appears to be formed as a result of the ever-present—
random pressure disturbances, some of which travel upstream at relative
gonlo speed and pille up to form the downstream boundary, roughly speaking,
of the local supersonic region. In other words, shock would not arise
in a completely steady flow; and en inoreamse of free-stream Mach number
(a nonsteady effect) would presumably permit attelmment of the potential-
limit solution. Although it seems possible that the potential ~limit
golution might in some cases limit the local Mach number at which tho
shock stabilizes, the maximum local Mach numbsrs corresponding to the
potentlial limits of this paper are for the most part groater on normal
alirfoils than those at which the shock stabllizes. Hence, the actual
shock normally prevents the potential-limit—solution from being reached.
There appears to be no direct relation between the two phenonmens, .
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The question as to what would happen if the potential limit
solution could be attalned in some menner on an isolated airfoll
can pernaps best be answered by again considering the converging-
diverging channel, In the chammel the limit solution can not only

be reached (point C 1in fig. 20) but the. second solution (branch - CD)

can also exist. The mechenism that produces this second solutlon is
the over-all pressure difference across the channel, applied through

external measns. This pressure difference, when sufficlently increased

causes the shock, which has formed in the local supersonlic regions
in a manner similar to that on an isolated airfoll, to move down-
stream from ths minimm section as a more or less norxmal shock
spanning the channel. The region of the chammel between the minimum
section and the shock contains the second solution. Thusg, the

upper branch solution CD can exist as & continuation of the lower
branch solution BC with no shock in the nsighhorhood of the limit
solution, point C. The fluid acceleration of equation (39) is
finite at the limit point which occurs at the minimum section

dA/dx = 0. In the isolated airfoil case the analogous occurrence of
a potential limlt solution a2t a point where —EEEE-= %g = Q
(equation (25)} leads to the conjecture whether a similar transition
through' the potential limit sgolution could not be effected at such a
point. In normal isolated airfoll operation the only mechanism

avallable for increasing the local Mach number is to move ths airfolil

faster. The over-all ambient pressure remains atmospheric. The fact
that in the chamnel the necessarily asymmetrical boundary conditlons
of over-all pressure difference (the samo chammel area at beginning
and end of the channel is assumed) can produce an asymmetrical flow
pattern, containing a transition through the limit solution would
therefore indicate that on ean isolated airfoil subject to the
symnetrical boundary condition of constant atmospheric pressure a
transition through the potentiel limit solution could not be affected
Artificial means, however, such as the proper combination of airfoil
shepe and suction slot in the airfoil might “pull the shock through"
in a local region near the airfoil and thus effect a transition
through the potential limit solution to operation on an upper branch
of the basic curves, (fig. 3).
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APPENDIX B

THE COMPRESSIBILITY CORBECTION RULE OF GREENE

The compressibility correction rule of. Groerne (réFfersnce 2)
can be derlved as follows: TFor a fixed asirfoll ordinate Y, the
right-hand side of equation (7) may be writhten for both compressibls
and incompressible flows to yield the egquation

J 9_.—-dv= j Tlay, T (41)
R AL AR |

in which, for a given airfoil, bath this compressible and incompress-
ible curvature functions C and Ci satisfy the same boumdary
conditions. o - i - .

The Greene rule corresponds to the eqaation, eqaivalent to
equation (18) of reference 2:

rv -
} Q__.._ dv = f ‘V'1 L - 8Vy (42)
J1 ' '

~V
,‘ pdv = logg V = (Vy-1) ~ loge Vy (43)
J | _ S

For 7 = 1.4, the integral in equation (43) can be evaluated in
closed form. The result is:

- 7 _ .
| . : -T2,

| pdv =f [1 ~ 0.2 M2 (+2-1)1°° av
vl 1 . =

- S [ e -7 @) (44)
where
G (Mp) = M° - (45)

(1 + 0.2 M02)5
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F(¢)=Ei——%-§°&(oos¢cp+9c,osch+23)+srp - (46)

Vo2 Mo Cwn
V1 +0.2 M2

sin ¢ = V sin @,

gin @6 =

The functions G (My) and F (9) are plotted in figures 22 and 23,
respectively.

Transition from equation (41) to (42) requires a certain corre-
svondeonce between the compressible curvature function C and the
Incompreseible curvature function Cj;. In order to see this corre-
gpondence, considor the integrands of oquation (41) plotted against
v and vy, respsctively (fig. 24(a)}. A one-to-ono corrcspandence
between v and vy can evidently always boc established such that
the elemoental areas making up the integrals in equation (41) are
equal, ag indicated by the cross-hatched elemonte in figure 24(&),
thus,

v-1 _vi-lo B L
B av = Gioy Vs T (9)

Aside from cases where a large local supersonic region exlste next

to the alrfoll, in which case it is possible for the curvature to  _
have a maximum avay from the airfoll, as indicated by the dotted

line in figure Zé(b), the compressible curvature function C and

the Incompreesible curvature function C3 both spart from the same.
value Cg at the airfoil and docreaso monotonically (for chordwise
stations near that of maximum velocity) to zero at y = o or

v =vy = 1., Hence, a one-to-one correspondcnce between v and vy
can be ostablished in figure 24(b) such that C = Cy at corrosponding
v and vi. If this one-to-one correspondence is the sams as that

by which cquation (49) was obtained from (41), the curvature functions
cancel out of equation (49), which can then bo integrated to yleld
squation (42),

In general, the two correspondences Just discussed are not the
same, In thils case the ocorrespondence in v . and vy leading to
equation (49) can bo regarded as rotainsd and a comprcsglible curva-
ture function agssumed that 1s obtained by this correspondence from
the incompressible curvature function (indicated by the dot-dash
line in figurc 24(b)). This procedurs again yields equation (42)
from (48) by cancelation of. G and C3i and integration. The com-
prossibls curvature function thug set up satisfieq the boundary
conditions and constitutos the essential approximation of Greene's




3z NACA TN No. 1328

rule (in additlon to the neglect of the curvature of the potentlal
lines involved in equation (7)).

The potentlal limit curve corresponding to Greens's rule is
that for which

dv_ _
55!—1- = o (50)
or, by equation (49)
pY = L (51)
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TABLE I N
BASTIC CALCULATIONS BY CURVATURE METHOD FOR POSITIVE VELOCITY INCREMENTS

Loge V 0.04 (0,08 |0.,12 |0.16 |0,20 [0.24 |0.,28 [0.,32 |0.36 |0.40 |[0.44
v-1 0,0408 {0.0833{0,1275| 0.1735]0,2214f 0.2712] 0,3231 0.3771 0.4333 O. 4918| 0,5527
K ¥Ca
Curveture function, ¢ = C(H)n
0 1.0 | 0.0404}0.0816[0.1237} 0.1666| 0.2104] 0.2552] 0.3008 0,3474 0,3950 0.4435] 0. 4831
1.2 | .0452] .0915| .1388] .1871] .2366| .2872 .3%80 .39200 4462 .5017| .5585
1.4 | .0523| .1059| .1608| .2178| .2752| .3348 .3954 .4579 .5280] .5878| .6554
1,6 | .0642! ,1302| .1982| .2681| .3401 .414% .4906 ,5692 ,6501f .7335| .8164
1.8 | .0910{ .1850| .2823| .3829| ,4869] .5945 .7057 .8209 .9400} 1.0633]1,1908
1,9 | .1287! ,2624| .4010| ,5447| ,6938{ .848%5 1.0088{ 1,1753 1.3479] 1.52711,7130
.4 | 1.0 | .0569] .0744] .1124] .1509] .1809] .2204 .c694] .3098 .5509] .3023| .4041
1.2 | .0414] .0834| .1262} .1697| .2139| .es8d .3045 .3509 ,3980| .4458! 4943
1.4 .0479| .0966| .1465; .1974| .2493| .3023 .3564 ,411§ ,4678 .5252| ,5837
1.6 | .0887| ,1189| .1807| .2441| .3091| .3757 .4441| .5142 .5861| .6598f 7354
1,8 | .0833| .1692| .2580| .3496] .4440| .5416 .6425( ,7463] ,8536 .9644|1.0788
1.9 | .1179| .2402| .3669] ,4082] 63431 .7752] .9212| 1,0725 1,2294} 1,3919|1.5604
.6 | 1.0 | .0348| ,0899| .1055] .1418] .1774] .2137 .2503] .2871] .3240] .3610| .3981
1.2 .0390| .o7es| .11ae] .1s91i| .2001] .2416 .2835 .32590 .3686] ,4117| ,4551
1.4 .0452| ,0911| .1378 .18853| ,2337 .282d ,.3327 3834 ,4349| .4871| .5401
1,6 ,0554] .1121| .1702] .220S5] .2s02| .352% 4159 ,4808 ,.5472{ .6151| .6844
1.8 .0787| .1597| .2433| .3294| .4181| .5096¢ .6039] .701lf .8012] .9045{1.0109
1.9 | .1114| .e2e68| .3463 ,.4701| .5982] .7308 .8681|1.010 j1,1576{1.3101}1.4680
.8 | 1,0 | .0321( .0643| .oees| .1287| .1609| .1931 ,2251] ,2569 ,2883] .3185] .3501
1,2 .0389| .0721| .1085 .1452| .1820| .2189 ,2588| ,2928 ,3298 .3668| ,4032
1.4 | .041s| .0837| .1263| .1s9s| .2131 .257Y .3015| .3463 ,.5914f ,4368| .4825
1.6 | .0811| .1032] .1583| .2104| .2685{ .3218 .3788 ,4389 .4960| .5562| .6173
1.8 | .07268| .1472] .2240| .3030| .3842| .4676 .5535 .6418 ,7326] .8258( .9219
1.9 | .1028| ,2003| .3194] .4332| .5510! .6727| .7986| .9289|1,0636]1,2029(1.3471
.7 | 1.0 | .0285] .05688] .0846| .1122| .1392| .1657 .1915] .2168| .2405] .2634] .2850
1.2 | .0319| .0637| .0985 .1269| .1581| .18 2192 .2489 ,2779] .3061| .3333
1.4 .0370| .0741| .1114] .1487| .1860| .2232] .2803| .2972] .3337| .3699| .40S5
1.6 | .0455| .o091s| .1382| .1855| .2332| .2814 .3301| .3792| ,.4286| .4784] .52854
1.8 | ,0647| .1310| .1989{ .2685| .3398| .4128 .4876] .5642| ,6426| ,7229| .E8051
1,9 | ,0917| .186s{ ,.2843| .2853| .4895| .5970| .7080| .8226/ .9409/1,0831/1,.1892
.8 | 1,0 | .0237| .0466] .o686] .o0se8{ .loes! .1276] .1442| .1s88] .1711]| .1807| .1870
1.2{ .0267| ,0s2s| .0ss8| .1020| .1253] .1473| .1679] ,1888{ .2038 .2186/ .2307
1.4 | .oz08| .0812| .0912| .1208! .1490| .1767| .2033| .2287] .2527| .2751| .2955
1.6 | .ozs0| .0760| .1140| .1517| .1893| .2266] .2634] .2998 .3355| .3705! ,4041
1.8 .0541| .1092] .1657| .2223| ,2802| .3390] .3987| .4594; .5209| .5832| ,6464
1.9 .o7esl .1s61] .2375| .3212! ,4072| 4987 ,s5866]| ,6€801] ,7763] ,8752! ,9769
.85| 1,0 | .0206] ,0400] .0580| .074%| .oe8s8| .1008( .1102]{ .11é2[ ,1177] .1135] .100e
1,2 | ,0231| .0452| .0660| .0854| .1031| .1187| .1320| .1423| .1492| .1518]| .l488
1.4 .o0268| .0529| .0779| .1018; .1243] .1452| .1l642| ,1810] ,1952] .2064| .2139
1.6 | .0331]| .0659| .0e80| .1296| .1603 .2959| .2179
1.8 .0474| .0952| .1436| .1923] .2414 .4904| .5405
1,01 .0674! .1385| .2073| .2798| .3541 .7527| .8382
.9 | 1.0 | .0167| .0318| .0441| .0538] ,0600 .0880| .1251
1.2 | .0187| .0358| .0507| .06%2{ ,0725 .0534| .1016
1,4 | .0219| .0422]| .0608| 0773} .0918 .0911| ,0514
1,6 | .0270] .0531| .0779| .1010| .1224 .1878| .1879
1.8| .0390| .0777| .1162| .1543]| .1919 .3678| ,3995
1,91 .08 J1121l Jjeesl 22791 ,2871) .5962| ,6608
Curvature funotion, C
1,0 | .040Z] .0808]| .1218] .1653] .2052] L 4214] .4660
.5 | 1,0] .0347] .0693] .1039f .1384| .1729 .3421) .3750
.6 | 1,0 .ozi9| .o0ezs| .0950| .1261| .1%68 .3021] 3290
.7 | 1.0 .o2as| .0s61| .o83s] .10¢8| .1355 .2481] 2664
.8 | 1.0]| .oess| .o0480| .0678] ,0876] .1062 .1678| .1712

NAT [ONAL ADVISORY
COMMITTEE FOR AERONAUTICS
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TABLE I - CONTINUED
BASIC CALCULATIONS BY CURVATURE METHOD FOR FOSITIVE VELOCITY INCREMENTS - CONTIXNUED

NACA TN No. 1328

Loge V c.48 |jo.s2 [0.66 |o.60 Jo.64 |o.68 |o0.,72 |0.,76 |0.80 [0.84 |O0.88
v-1 0.6161 |0,6820|0,.7507{0.8221{0,8965}0,9739| 1,0544|1,1383|1,2255|1,3164]1, 4109
Mo n y¥e, - -
—1\Nn
Curvature function, C = Ce(v—j-v_
0 1.0 [0.543810.5955]0.6484(0,7023 [0,7575]0,.8138[0,8713[0,9301]0,9902{1,0516{1.1143
1,2 | .6166]| .6761| ,7370| .7994| .8632] .9286| ,9955|/1,064 [1.1343|1,2062]1.2798
1.4 | .7247| .7958| .8689| .9439|1.0209]|1,0100/1,1812]|1,2646(|1,3502|1.4383(1.5886
1.6 | .9078} ,9990(1,0929}1,1896|1,2893 |1.3920[1,4978{1,6070{1,7194[1.8354|1.9549
1,8 |1,3227[1,4593{1.6006|1,7469 |1,8983 |2,0550|2,2172|2,3852|2.5589(2.7390|2,9252
1,9 [1,9058|2,1089 [2,3136]2,5291 |2,7527 |2.9848}3,2256|3,4758|3.7350} 4.0045]4.2839
«4 11,0 | .4764| 5190 .5620| .6053} .6489| ,6927| .7366| .7808| .8249| .B691| .9132
1.2 | .5435| .5933| .6438| .6940| .7467| .7989] .8s518| .9052| .9590|1.0132|1.0678
1.4 | .6433! ,7041| .7659| .8289| .8931| .9583|1,0247!1.,0922]1,1607|1.2305{1,3012
1.6 | .8129| ,8924| ,9738{1.0573(1.1428|1,2305/1.3202|1,4123|1,5064|1,6030[1.7017
1.8 [1.1968[1,3187 [1,4446]|1,56745 [1,7087 |1,8472(1,9900]2,1378|2,2901{2, 4476]2,6099
1,9 |2,735011,9159 |2,1035|2,2979 |2,4994|2,7082|2,9247]3,1493!3,3817|3,623013,8730
5 | 1,0 | .4352| .4722| .,5092| ,5459| ,5823| .6185| ,6554| .6878| .7222| ,7559| .7887
1.2 | .4989 | .5428| .5869| .6312| .6755| .7199| .7641| .8083| .8522( .8959| .9391
1,4 | 5938 .6482| ,7033| .7590| .B153| .8722| ,9297| .9876[1.0460|1,1048{1.1640
1.6 [ 7653} .8276| .9015| .97701.0540[1,1326}1,2127|1,2945[1,3778|1,4629{1,5495
1,8 |1,1206{1,2337|1.3502]|1,4705 {1,5941 |1.7216/1,.8531}1,9887|2.1283(2.2724 |[2,4207
1,9 |1,631611,801011,9764)2,15861 |2,3463 |2,5412/2,743012,952313,1687(3.3933 |3,6257
6 | 1,0 | .3802| .4097| .4383| .4661| .4928| .5183| .5425| .5652| .5861| ,6052( .6221
1,2 | 4396 .4756| .5111| .5461| .5805( .6140| .6466| ,6783| ,7088| .7380| .7657
1,4 | 5283 .5742| .6203| .6662| 7121 .7579| .8034| .8488( .8934| .9378| .9817
1.6 | .6793| .7423| .8063| .8711| .9369]1.0035/1.0710|1,1395{1,2086|1,2787(1,3496
18 i Seen lirbea (1 aa00 1 ooes [3: 1400 [2- 3598 | 5- 5004 | 2. 6048 |5. 0804 |5, 0938 |3.3030
. . . . . .1459 |2, .5054|2,6948 |2,8904 (3 .
T TIN0 | oSe37 | S3404| 5548] .3668| 23769 .5819] .3842[ 3828 o5754] 3620 .5435
1.2 3594 | 38431 .40768| .4293 | .4491| ,4668| .4821| 4949 | .5047| 5113} .5145
1.4 | .4408| .4749| .8084| .5408| .5722| .6023| .6310| .6581| .6836| .7074| .7292
1.6 | .5787] .6291| 6797} .7302| .7808{ .8314| .8817| ,8321| .9821[1,0321(1,0819
1.8 | .8803| .9754]1.0636|1.1639 [1.2462/1.3408}1,4376|1,5369|1,6384(1,7427[1.8495
1.9 |1.5194|1,.4538[1.5926|1,7360 [1.8841 |2,0571{2.1951]|2.3586 |2,5272|2,7019 |2, 6624
.8 | 1.0 | .1894| .1868| .17680| .1605| .1285| .0600| .1160| .1874| .2484| .5080] ,3619
11,2 | .2%98| .2482] .2462| .2418] .2309| .2108| .1771| ,1169}{ .0057| .1936| .2676
1.4 | 3139 3297 .3427| .3524| .3584| .3602] ,3569| .3476| ,3313]| ,3059| .2664
1.8 | .4376| .4695] ,8000| .5291| .5565| .5822| .6050| ,6276| .6472| .6581| .6797
1.8 | 7105 ,7754| .8411} .9077| .9752(1.0436[1.1129(1.1834}1,.2540]1,3278|1.4020
1,9 |1,0815{1,1891 |1,2998]1.4138 [3,6311 [1,6519]1,7764|1,8047 |2,0371]2.1739 [2,5151
e85 | 1,0 | 0725 | 0475 1155 .132§T'T§I§9 2600 5095 %5 24001 | .4601 [ 5117
1,2 | .1%82| .1188| ,0678| 0895 | ,1575| .2154| ,2707| .3255| .%804| .4357| .4913
1.4 | .e169| .2145| .2050] .18s58| .1513| .o0810| .1228| .2063| ,2763| .3417] ,4050
1,6 | .3378| .3847| .3688| .3795| .,3862| .3886| .3858| ,3772( ,3617( .3377| .3030
1,8 | .5907| .8408| .6908| .7406| .7904| .8401| .BE97| 9393} ,9889|1,0390 |1.0896
1,9 | .9258[1.01856]1,1076]1.2019 |1,2087 |1.3980}1.5000(1.6050 |1,7129)1,.8244 [1.9393
U ] 1.0 | 1828 2040 2448 , " T2 .424B| .4728| 5240 5749 .
1,2 | .1448| .1898| .2335] .2790] .3262| .3753| .4261| .¢785| 5322 ,5869| .6425
1.4 | .0785| 1402 | .1917| .2426 | .2944| .3476| .4023( .4586| ,5163( ,5751| ,6349
1.6 | .1807| .1605| .1251| 0281 .1397| .2144| .2815| .,5483| ,4105| .4748| ,5392
1,8 | 4297 .4571| .4835| 5078 | .5299| .5496] .5668| .5815| .5936| ,6034| .6110
1,9 | .7e89| ,7914| .8585| 9265 ,9956]1,0659]1.1375]1,2107[1,2865/1,3625 |1,4417
= loge v\" NAT TONAL ADV ISORY
Curvature function, C = Co oty COMMITTEE FOR AERONAUT ICS
0 1.0 | .5112]| .5568| .6030| .6497| .6969| .7447| .7930| .8420| .8914| .9415| .0922
5 11.0]| .2074] .439%| .4706| .s012| .5311| .5600| .5879| .6147}! .6402| .6644| .6870
.6 1.0 | .ss48| .3796] .4031| .4255| .4459| .4648] .4818| .4967{ ,5092| .5192| .5263
‘7 |1.0| .eszs| .2972| .3091| .3185| .3247] .3275| .3263| 3204 .3089| ,2905| .2631
8 11.0]| .1e99| .1629] .1480]| .1207| .0642| .0989] .1659| ,2223] ,2751| .3263] ,3766

266
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TABLE I - CONCLUDED
BASIC CALCULATIONS BY CURVATURE METHOD FOR POSITIVE VELOCITY INCREMENTS -~ CONCLUDED

Loge V 0,92 0.96 1.00 1.04 1.08 1.12 l1.18 1,20 1.24 l1.28 1.32
V-1 1,5093(1,6117)1,7185|1,8292]1,9447|2,0649|2,1899[2,3201|2,4556|2,5966|2,7434
% Lo =
T3 Curvature funetion, C = C‘G____‘%)n
[+ 1,0 |1.178411.,2439|1,3108
1,2 [1,3553(1,4326(1,5118
1.4 |1,6215(|1,7168(1,8148
1.6 {2,0781]2,2051|2,3361
1,8 13,1182 |5,3180 |3,5249
1,9 |4,5741 [4,8752|5,1879
T3 [ IO [ 0575 |1.0010|1.0444|1.0878 1. 130T 1. 1721 1. 2155 1. 2550 1. E055 | 1. 3521 1. 359¢C |
1.2 |1,1228(1,1780|1.2534(1,.2889|1,3446|1.4002{1,4558}1,5113|1,5665{1.6216{1,6763
1.4 |1,3730|1.4458|1,5197|1.5945/1.6703]1,7471|1,824811,9033|1,6828{2.0632|2,1444
1,8 |1,80209]1.9064(2.01235(2.1208|2.2317]2,3452]2,4613|2,5802]/2,7018|2.826112,9535
1.8 |2,7777)2.9508|3.1298(3,3141|35,5048]3.7016|3,9047|4,1146|4,3313(4.5551] 4.7864
1,9 [4,1321]4.4008]4.6794|4,9680|5,2675[/5.5779]15.8996|6,2354|6,5794|6,9582) 7,3104
5 1.0 .8205( ,8s1l| .ssos| .9086| .9351] ,96800{ ,9831}1,0045|1,0240|1.0416|1.Q576
1.2 .9818(1,0241(1.0656/1,1064|1.1464]1,1854|1.2236/1,2608{1,2970|1,3323| 1,3667
1.4 [1.,2235[1.2832(1.3431|1.40353|1,4636)1,5241|1,5847|1,6455(1,7065|1,787711,.8804
1,68 |1.68378]1.7278(1.8194|1,9128|2.0080]/2,1051|2,2039{L2,.3048(2,4078{2,5131 12,6207
1.8 [2.5737{2.7314(|2,8940(3.0616|3,2345|3,.4128/3,5967|3,7866]|3,96826| 4,1848} 4,3940
1.9 |5,8665[4.1160|4.3746(4,.64244,9201|5,2079|5,5062/5.8152/6,1358/6,4681)6,.8129
5 1,0 .6368| .6491( .6586| .86853) ,6690| .6696| .6671) ,6614| .6827| .6414| ,6277
1.2 .7920| .816S| .8394| .8603| .8785| .8668] .9123| ,9261| ,9386| ,9501| ,.9610
1.4 {1.0249]1,0675]|1,1095/1,1508]1.1914({1.2315|1,2712[1,3105{1.5499|1.3895|1.4208
1.8 [1.4213]1.4939(1.5675|1,8420(1,7176/1.7944|1,.8725{1,9523|2,0387}2.1172}2,2051
1,8 |2,3076[2,4456(2,.5876]2,7535|2.68847|3.0401|3.2004|3.3660|3.5371(5.7139|3,8971
- 1,9 [3.5202]3,7451(3.9781) 4.2192 {4,4683[4.7284|4.9968|5,2755|5,5642]|5,086586,1780
.7 1,0 S5438| ,3155] 2759 2185 ,1206| .1521| .2544] .3311
1,2 +5137) .5088| ,4994]| .4851| 4657 ,4407| .4098| ,3725
1.4 7491 ,7670| .7831| .7972| ,8098} .8211| ,8315| ,84l5
1,6 [1,1316(1,1813({2,2310{1,2811|1,3316(1,3820}1,4353|1,4892
1.8 [1,959212.0719(2,1878|2,3071 |2,4302]2,5573|2,.68868]2,82468
- 1.9 13,0692 |3,2626!3,4628(3,670115,885114,108114,3392) 4,5704
.8 1.0 <4170 4714} .5851| ,85778| .62983
1,2 3341} .3970| .4574| 8189 | ,5728
1.4 2120} L1107 ,1699| .2629| 3418
1.8 8929 7043 | .7142] ,7229| 7311
1,8 {1,4781]1,5561|1.6363(1,7190(1,8048
1,9 | 2.461112,8123 |2,7690]|2,.9314 (35,1002
.85 1.0 5655 .6153| .6668
1,2 «5472| .6031| .6588
l1e4 .4672] .5284| .5888
1.6 | .2530| .1786| .0859
1,8 11,1410|1.,1836(1,2478
1,9 [2,0582(2.1814(2,3092
9 %.g .6780 .7292
69831 754
1.4 | .75€0]| .s128 NAT IONAL ADV ISORY
1,6 | .6038) .6684 COMMITTEE FOR AERONAUTICS
1.8 .8168| ,€6214 .
1.9 11,523611,6088
oLe V\!
curvaturs funstiom, C = c,(l__s__
loge V.
0 T.0 [ 1.0455] L. 0GE4] I,
5 1,0 «7078| ,7268] 743 »7586| ,771Q% .780 .7879) ,7921] ,7932] .7913 .7862
8 1,0 .5303] ,5308{ .82785| .5201| .5081| .4011] ,4886| ,4399] ,4044| .3807| .3067
.7 1.0 «2230) .1604| ,0534] .1€94| .2702| .3374| .3970| .4512
8 1,0 | ..4262] .4751| .5229] .5694] ,6143
Loge V 1.36 1.40 1,44 l.48 1.52 1.56 1.60 1,64 1l.68 1,72
-1 2.e962| 53,0852 35,2207 £,3929|3,5722) 3.7586{ 3.9530| 4.1552| 4.3656| 4,6845
¥o I i Jﬁ:
Curveture function, C = ¢ H 3
4 [ 1,0 |1,4081]1.4413[1,4753]1,5081|1.5398]1.5705{ 1.6003}1,6295| 1,6585|.1.687¢6
1,2 |1,7308|1,7848|1,.8386|1,8920{1,9453|1,.9985 2,0518]2,1055{2.1597[2,2148
1,4 |2,2265|2,.3096(2,3937|2,4788|2,.5652|2,65628] 2,7420] 2,83208{ 2,9258{3,021C
1,8 |3.083813,2172{3,3539|3,493813,6376|3,7849 3,930835] 4,0921| 4,2524] 4. 4175
1,8 | 5.0253(5.2721|5.6272 5,790916.0636| 66,3458 6,6373| 6,9397| 7.2522|7,5761
1,9 7.51%1%916_5 8,512118,942916,38091 ex7ll0, 3354 A353N1,.3540111,. 8923
5 1.0 | 1,0719]11,0846[1,0964}1.1074|1,1181
1.2 | 1.,4005|1,433811,4668(1,5000|1.5337
1.4 |-1,8916]1,9546[2.0188]2,0838|2,1507
1,8 | 2,7309(2,8433]{2.9599] 3,0792|3.,2082
- 1.8 | 4.6102| 4,8338|5,0648] 5,3040] 55,5518
1,9 | 7.,1707|7.5417|7.9269] 8,32€5|8,7415
oge V!
=
Curvature function, C c‘G;sTv)
5 | 1,0 { 0,7780]|0,7869]|0,7531} 0,7371]0,7185
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TABLE II

~ NACA TN No.

BASIC CALCULATIONS BY CURVATURE METHOD FOR NEGATIVE VELOCITY INGCREMENTS

Loge V -0.04 |-0.12 |-0.20 |-0.28 |-0.36 [=0.44 [-0.52 |-0.50
V-1 F0.039210.1131 0. 1813}0.2442 Q. 3023 }0. 356040.40551+0.4512
Mo | n %
Curvature function, C = C(" =
0 1.0 |0.0396 [0, 1165 ]0.1904]0.2615 |0.3299]0.3958] 0.4692] 0. 5203
1.2 | .0443| .1299| .2118| .2902 | .3654| .4374| .5065] .5729
1.4 | .0510| 1494 | .2429{ .3320| .4169| .4979 .5751| .6488
1.6 | .0624] .1820| .2950| .4018| .5029| .5986( .6892| .7751
1.8 | .0880| .2656| .4124] .5592 | .6987| .8256| .9465|1.0599
1.9 | .1243| .3597| .5787) .76824 | .9721[1.1486}1.3131[1.4663
4.4 [1.0 | .0386] .1077| .1767| .2437 | .3086| .5716] .4325] .4915
1.2 | .0406| .1199| .1963| .2700 | .3411| .4097| .4759! .5396
l.4 | .04689| .1377| .2248| .3082 | .3883| .4650( .5385! .6090
1.6 | .0573| .1676| .2724) .3720| .4667| .5568| .6425| .7241
1.8 | .0808| .2348| .3796{ .5166| .6434| .7635] .8666| .9829
1.9 | .1140| .3302] .5317| .7195 | .8947]1.0680] 1.2105|1.3628
o5 | 1.0 | .0345| .1022| .1684| .2330| .2958| .3570] .4165| 4743
1.2 | .0385| .1138| .1869| .2578| .3265| .3930] .4574| .5197
1.4 | .0444| .1307| .2138| .2939] .3710| .4451] .5185| .5852
1.6 | .0641| .1588| .2687| 3540 | .4448| .5316| .6144] .6934
1.8 | .0764| .2223| .3598| .4892| .6112| .7261] .8344| .9366
1.9 | .1078| .3123| .5033| .6815| .8480[1,0034|1.1487]1.2845
.6 |1.,0 | .0319| .0953]| .1677| .2191| .2793| .3382| .23958| .4521
1.2 | .0386| .1059| .1748| .2420] .3076| .3716| .4337| .4942
1.4 | .0411] .1216| .1996| .2753| .3486| .4196] .4882| .5545
1.8 | .0501] .1475| .2409| .3306| .4166| .4990| .5780| .6537
1.8 | .0708| .2060| .3340| .4550| .5693( .6774| .7797| .8764
1.9 | .0996| .2890| .4662| .6319| .7870| .9322{1.0681|1.1954
.7 | 1.0 | .0286| .0862| .1438| .2012 | .2581| .3143]| .3697| .4240
1.2 | .0319| .0958( .1691| .2217| .2834| .3441] .4035| .4617
1.4 | .03687| .1096{ .1812{ .2513| .3199| .3868| .4520| .5153
1.6 | .0448| .1327| .2179| .3004| .3801| .4571| .5314| .e031
1.8 .,0631| .1848| .3005| .4106| .5162| .6147 .7092| .7991
1.9 | .0890| .2687| .4180| .5675| .7080| .8400| .9639|1.0804
.8 1,0 | .0243] .0746] .1282] .1784| .2312[ .2840] .3366| .3887
1.2 | .0270| .0825| .1389| .1957| .2526| .3092| .3653] .4207
1.4 | .0312| .0941| .1574| .2206| .2831] .3450| .4069| .4658
1.6 | .0380| .1135| .1880| .2613| .3331| .4033| .4718] .5384
1.8 | .0532| .1568| .2566| .3525| .4447| 65331 .6179| .6991
1.9 | .0749| .2186| .3544! .4828]| .6042| 7190 .86875| .9301
.85 | 1.0 | .0216| .0889]| .1147| .1841| .2146| .2604| .0164| 3673
1.2 | .0240| .0740] .1280{ .1793| .2334| .2877| .3419] .3958
1.4 | .0275| 0841 .1422] .2010| .2601} .3188| 3771 .4349
1,6 | .0335! .1010| .16889| .2359| .3030| .3691| .4341] .4978
1.8 | .0469| .1389| .2288| .3166| .4000| .4817| .5605! .6368
1.9 | .0659| .1928| .3137| .4287| .5382| .6422] .7412] .8352
v9 | 1.0 | .O182| .O5B0| +1015| 1475 .1952| «244L| -2935| .345L
1.2 | .0203| .0638| .1109| .1603| .2112| .2630| .3152f .36875
1.4 | .0230! .0722| .1242| .1782| .2334| .2891| .3450| .4007
1.6 | .0279| .0860{ .1460| .2072| .2688( .3305| .3918| .4524
1.8 ] .0390| .1170| .1948| .2712) .3466| .4205| .4927| .5630
1,9 | .0548] .1812]| .2639] .3628] .4580| .5494] .6371| .7212
NAT [ONAL ADVISORY
COMMITTEE FOR AERONAUTICS
Loge V 0408 [=0.18 [-0.24 |=0.32 |-0.40 |=0.48 | =0.56 |=0.64
v -1 -0,07690.1479 }-0. 2134 }-0, 2739 |0, 3297 [-0. 3812}-0, $288|-0. 4727
Mo n \J Eaa .
Curvature function, C = (iOge v)ﬂ
og
) 1.0 [ 0.0793] 0.1569] 0.2331] 0.3078 5-3613]
.5 | 1.0 .0693| .1382| .2068| .2750| 3425
.6 | 2,0} .0843] .1291| .1940] .2590| .3237
.7 | 1.0] .o0880f .1172| .1775| .2384| .2098
.8 | 1,0 .0496] .1020| .1563| .2122] .2692

1328
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TABLE II = CONCLUDED
BASIC CALCULATTONS BY CURVATURE METHOD FOR NEGATIVE VELOCITY INCREMENTS = CONCLUDED

Toge V =0,68 |~0.76 |=0.84 | =0.92 | -1,00 | =1,08 [ -1,16 [ =1.24 ]
V-l -0, 493410, 532310, 5683/0, 60150, 6321[-0, 66040, 88650, 7108

Mo Iﬁ ﬂE;
- 1\N
Curvature funetion, C = C (w—=—=
Nnv-1

0.5792]0.6861]0.6909]0.7439]0,7951] 0. B445] 0.8924] 0.9387
.6364| ,6976| ,75684| .8120] ,8673| .9197| ,9702|1,0189

o4

.8017{ ,8757) ,9462|1,0134|1,0775/1,1387|1,1872(1,2530f
1,0830(1,1774|1.2662|1,.3501(1,4292|1,5089| 1,5745|1.641
1,485711,6099]1,7259]1,8%4411,93%8!2 08 98! 2,2031

«5304| ,5850f ,8379| .6894| ,7393| .7877 .8348| ,88085

.5800| ,6383| ,6947| ,7492| ,.8020] .8530| ,9024 .9503

«8512| .7148| ,7759| .B348| .8914| ,9459] ,9985{1,049
.7688| .8408( ,9095| ,9753|1,0381(1,0982|1,1587|1,210
1,032911.1e39(1,2097{1,.2909|1,3676;1, 4402| 1,50891,5739

13/1,745411,842811,9342]2,0198]2,1002
.5070| 5605 .8128{ ,6633| ,7127| ,7607| .8078| ,8830
.5828) ,8099| .6882] ,7ls88| ,7708| ,8213| ,8702| .9176

[y ] Wy S e I N el

=
2

LY
[
-
>
[
o

&
3
e
o

o
e
[
(<

.8845| ,9658 1:0430 1,1165}1,186511,2530}1,3188|1,376%
1,186911,2929(1.%898(1,4810|1,5668|1,6477]1,7240]1,7989
rvea = 8EET

+4753| ,%288| .B8813) ,8327| .6830) ,7320| ,7798| .82685
85245 .5816| ,8375| ,6919| .7449| ,7968( ,8488| 8954
.6032| .86680| ,7269| ,7859| ,8430| .8982| ,9516|1,0033
«7770| .8518( ,9229| ,991311.0567(1,1164|1,1794|1,2369
1,027111,11861,20571,.2878 |1.3656]1,4393]1,8091/1,8763
.4178| ,4679| .5178| .5658| .B6136] ,6605| ,7062]| 7612
«4491( .BO17| ,5534{ .6042| .8539{ ,7028| ,7502{ ,7987
.4918| 5477 ,8025] ,6561| ,7084] ,7594| ,8091) ,8578
86011 ,6209| .6800| ,7378} ,7935| 8477 ,5003]| ,9514

«88

L]
DORANVOVDORNO|ODNALBOOORPONNOIRANOODARNO[COAANO|lODOAeNDO
.
N
)
-
L]
o
-
v}
L ]
.
L[]
[y
ﬂ

«8314| ,6977| ,76821| .8243 | ,8845! ,9427| .9980(1,08%52

.8018] ,8790] ,9529]1,023711,0613]1.1561/1,2180]1,2774]
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Figure 1.- Compressible potential flow past symmetrical alrfoll.
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Alrfoil velocity increment, V-1
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Values computed from equation (10) for
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Alrfoll curvature parameter, [Tl
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Pigure 3.- Positive velocity increment on
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Values computed from
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Cq for various values of 7,

Positive velooit
equation (10) for V>1 and tabulated in table I,

ordinate Y and airfoil ecurvature

Figure 3.~ Continued,
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Fig. 21 NACA TN No. 1328
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{a) fdv = fqdvy. {b) Curvature functions,

Plgure 24,- Correspondence between compressible and incompressible flow for
comprassibility correction rule of Greene,
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